应用题的学习具有层次性,所以在教学中需要根据学生的学习能力不同而作出不同的教学调整,给予学生更多的解题思路,让学生在解答应用题的过程中能体会到解题的技巧和魅力。人教版数学四年级下册所出现的“鸡兔同笼”应用题就可以作为教学的典型示范,因为其难度适中,解题思路众多,学生既可以通过直观的列表法这种简单的解题思维得出答案,也可以通过逻辑性思维去思考题目。这种具有过渡性层次的题目能给予学生思考的空间又兼顾到各种层次学生的学习水平,是帮助学生体会应用题各种解题思维的阶梯。所以笔者在教学时,介绍了三种解题思路并作适当延伸,希望能帮助学生拓宽自身的解题思路消除解答应用题时的畏难心理,让学生的数学思维能更上一层楼。
一、直观图解法
考虑到小学生的思维能力和接受知识的能力还没有发展成熟,过度拔高其实也不利于学生的成长,故小学应用题多数考查的还是学生的直观思维,应用题间的脉络和变化规律也异常清晰。只要学生根据题目中的条件依次代入,就能很快得出答案,这种解法是各个层次的学生都能轻松掌握的。而直观图解法是一种把题目中的所有条件陈列出来,快速找到题目中所隐藏的数量关系的解题思路,表格法、线段法、文氏图法等多种画图的方法也都是帮助学生理解数量关系的工具。
例如,在教学“鸡兔同笼”应用题时,教师先展现书本例题:笼子里有鸡和兔共8只,而笼子里的脚一共有26只,问鸡和兔各有多少只?学生一开始听到题目都觉得非常茫然,因为题目中只给出头的个数(8个)和脚的只数(26只),然后就要求解出鸡的只数和兔子的只数,完全不符合学生对于数学应用题的认知。在他们的认知中,解应用题一般是先找出数量关系,然后再根据公式列出算式进行求解。而在这道题里,没有公式,也没有明确具体的数量关系,那应该如何解呢?这时教师就应该启发学生当遇到无法理解的题目时,可以把题目简单化。鸡的数目和兔的数目都是整数,总共才8只,我们可一个个代入数目列表,看哪种情况能符合26只这个条件,当两个条件都符合,那答案也就呼之欲出了。
这种课本上出现的列表法简单明白地揭示了足数会根据鸡和兔只数的变化而变化,在消除学生畏难心理的同时还能让学生建立起“直观解题思维”:当题目太复杂,不能一眼看穿数量关系时,应该列表画图将题目中的数量关系直观形象地表达出来,这样就能寻找到题目的突破口,因为要解题必然离不开题目所给予的条件。这种思维能帮助各个层次的学生在考场中寻找突破口,顺利解题。
二、假设解题法
假设法也是小学应用题解题的常用思路。当数量关系在题目中不明显时,就可以借助已知条件或者结论进行推导。这个推导的过程是循序渐进的,当推导的过程中出现与已知条件相矛盾的情况,就应该及时调整“假设”的情况,直到找出与“已知条件”相吻合的情况,正确解题。
例如,教学“鸡兔同笼”应用题时,教师在引导学生通过列表法得出答案后,就应该引导学生根据列表里呈现的数量关系,去思考已知条件中存在的潜在关系,反推出是否有其他解法。就以上述书本题目为例,一开始我们可以假设一种极端情况,再依次调整我们的假设条件。假设全是鸡,那总共应该有2×8=16只脚,这明显是跟题目不相符的。而为什么不相符呢?因为每只兔子比每只鸡多了2只脚,也就是说,不相符的数目正是因为兔子多出的两只脚造成的,而这里面相差的数目是26-16=10只,一只兔子相差2只脚,要解决这个矛盾,假设的情况就应该调整成兔子多,10÷2=5只,而鸡就少于5只,所以最后答案应该是鸡有3只,兔子有5只。
假设法主要是引导学生思考矛盾处在哪,从而及时调整自己的预设情况。这是一种比较灵活的思考问题的方式,既能锻炼到学生的数学思维,也能扩大学生的思考面。如果学生能学会分析矛盾,必定能提升自身的解题能力。
三、迁移运用
每一类应用题都有其特点,找到题目的特点并找到其对应的特殊解法,接下来类似的题目就可以举一反三了,但这种解法需要学生分析题目的条件和具体公式的适用条件。
例如,学生碰到下面这道题目:学校举行数学竞赛,共10题,答对一题加10分,答错一题或不答题扣6分,最后A学生的得分是36分,问他答对多少题?这道题目跟“鸡兔同笼”应用题其实有相似之处,同样都有两种情况:鸡跟兔,答对和答错;而情况不同又存在差值,每一只兔子比鸡多两只脚,答对一道题比答错一道题多10+6=16分;在只知道差值的情况下,又知道了它们的总脚数和总分。如果学生能作出这样的分析,把鸡兔同笼的解答方法迁移运用到这道题中,就能顺利解出这道“陌生”的题目。
迁移运用应该成为学生的一种解题思路,碰到“陌生”的题目学生应该思考有哪种题目跟它相对应,再迁移运用相关解题方式到新题目中去,继而顺利解题,达到“他山之石,可以攻玉”的效果。
从“鸡兔同笼”这道应用题的教学出发,笔者试图引出三种常用的解题思路,帮助学生拓宽解题的思路去应对往后难度逐渐加深的应用题。只有把学生的思路打开,他们才更容易接受知识和运用知识,应用题的解题能力才能达到切实的提高。